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Introduction: Areas and Volumes

Definite Integral of a Function of One Variable

Let f be a continuous function of one variable defined on the
closed interval [a, b].

Suppose that f has only nonnegative values.

Then, the graph of f looks like

That f is continuous is reflected in the fact that the graph
consists of an unbroken curve.

That f is nonnegative-valued means that this curve does not
dip below the x-axis.
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Introduction: Areas and Volumes

Definite Integral of a Function of One Variable

We know from one-variable calculus that the definite integral
of f betwen a and b is denoted

∫ b
a f(x)dx.

We also know that this definite integral exists and gives the
area under the curve.
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Introduction: Areas and Volumes

Definite Integral of a Function of Two Variables

Now suppose that f is a continuous, nonnegative-valued
function of two variables defined on the closed rectangle in R2.

R = {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}

Then, the graph of f over R looks like an unbroken surface
that never dips below the xy -plane
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Definite Integral of a Function of Two Variables

Analogously, there should be an integral that represents the
volume under the part of the graph that lies over R

We can find such an integral by using Cavalieri’s principle.
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Introduction: Areas and Volumes

Cavalieri’s principle

Suppose f continuous nonnegative-valued on

R = {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}
Suppose we slice by the vertical plane x = x0, where x0 is a
constant between a and b

Let A(x0) denote the cross-sectional area of such a slice
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Cavalieri’s principle

Suppose f is continuous nonnegative-valued on

R = {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}

We can think of the quantity A(x0)dx as giving the volume of
an “infinitely thin” slab with:

Thickness dx , and
Cross-sectional area A(x0)
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Cavalieri’s principle: Definite Integral of a Function of Two
Variables

Suppose f continuous nonnegative-valued on

R = {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}

Hence, the total volume of the solid is the “sum” of the
volumes of such slabs

V =

∫ b

a
A(x)dx
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Introduction: Areas and Volumes

Definite Integral of a Function of Two Variables

Note that A(x0) is the area under the curve z = f (x0, y)

This curve is obtained by slicing the surface z = f (x , y) with
the plane x = x0

Therefore,

A(x0) =

∫ d

c
f (x0, y)dy (x0 is constant)
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Definite Integral of a Function of Two Variables

A(x0) =

∫ d

c
f (x0, y)dy (x0 is constant)

Then,

V =

∫ b

a
A(x)dx =

∫ b

a

[∫ d

c
f (x , y)dy

]
dx (iterated integral)
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Introduction: Areas and Volumes

Example 1

Consider the case of a box

This box is bounded

On top and bottom by the planes

z = c (where c > 0) and z = 0

On the sides by the rectangle

R = {(x , y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b}
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Example 1

Consider the case of a box

Hence, the volume of the box may be found by computing the
volume under the graph of z = c over the rectangle

R = {(x , y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b}

Using the iterated integral

V =

∫ a

0

∫ b

0
cdydx =

∫ a

0

(
cy |y=b

y=0

)
dx =

∫ a

0
cb dx = cbx |x=a

x=0 = cba
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Example 2

We calculate the volume under the graph of z = 4− x2 − y2

over the square

R = {(x , y) ∈ R2 | − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1}
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Example 2

We calculate the volume under the graph of z = 4− x2 − y2

over the square

R = {(x , y) ∈ R2 | − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1}

V =

∫ 1

−1

∫ 1

−1

(4− x2 − y2)dydx =

∫ 1

−1

(
4y − x2y − 1

3
y3

)∣∣∣∣y=1

y=−1

dx

=

∫ 1

−1

((
4− x2 − 1

3

)
−
(
−4 + x2 +

1

3

))
dx

=

∫ 1

−1

(
8− 2x2 − 2

3

)
dx =

(
22

3
x − 2

3
x3

)∣∣∣∣x=1

x=−1

=

(
22

3
− 2

3

)
−
(
−22

3
+

2

3

)
=

40

3
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Introduction: Areas and Volumes

Proposition 1.1

Let R be the rectangle

R = {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}

Let f be continuous and nonnegative on R

Then, the volume V under the graph of f over R is

V =

∫ b

a

∫ d

c
f (x , y)dydx =

∫ d

c

∫ b

a
f (x , y)dxdy
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Proposition 1.1

V =

∫ b

a

∫ d

c
f (x , y)dydx =

∫ d

c

∫ b

a
f (x , y)dxdy

Remark

Slicing the solid with the plane y = y0

instead of with the plane x = x0
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Example 3

We find the volume under the graph of z = cos x sin y over
the rectangle

R =
{

(x , y) ∈ R2 | 0 ≤ x ≤ π

2
, 0 ≤ y ≤ π

4

}
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Example 3

We find the volume under the graph of z = cos x sin y over
the rectangle

R =
{

(x , y) ∈ R2 | 0 ≤ x ≤ π

2
, 0 ≤ y ≤ π

4

}
V =

∫ π/2

0

∫ π/4

0

cos x sin y dydx =

∫ π/2

0

(− cos x cos y )|y=π/4
y=0 dx

=

∫ π/2

0

(
−
√

2

2
cos x − (cos x)

)
dx =

2−
√

2

2

∫ π/2

0

cos x dx

=
2−
√

2

2
sin x

∣∣∣∣∣
π/2

0

=
2−
√

2

2
(1− 0) =

2−
√

2

2

It is easy to check that the same result is obtained calculating

V =

∫ π/4

0

∫ π/2

0

cos x sin y dxdy
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Example 4

Does this figures haves the same volume?
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