Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Lecture 16

Marius A. Marinescu
Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos
26 de abril de 2021

Outline

(1) Introduction: Areas and Volumes

Definite Integral of a Function of One Variable

- Let f be a continuous function of one variable defined on the closed interval $[a, b]$.
- Suppose that f has only nonnegative values.
- Then, the graph of f looks like

- That f is continuous is reflected in the fact that the graph consists of an unbroken curve.
- That f is nonnegative-valued means that this curve does not dip below the x-axis.

Definite Integral of a Function of One Variable

- We know from one-variable calculus that the definite integral of f betwen a and b is denoted $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d} \mathbf{x}$.
- We also know that this definite integral exists and gives the area under the curve.

Definite Integral of a Function of Two Variables

- Now suppose that f is a continuous, nonnegative-valued function of two variables defined on the closed rectangle in \mathbb{R}^{2}.

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

- Then, the graph of f over R looks like an unbroken surface that never dips below the $x y$-plane

Definite Integral of a Function of Two Variables

- Analogously, there should be an integral that represents the volume under the part of the graph that lies over R

- We can find such an integral by using Cavalieri's principle.

Cavalieri's principle

Suppose f continuous nonnegative-valued on

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

- Suppose we slice by the vertical plane $x=x_{0}$, where x_{0} is a constant between a and b

- Let $A\left(x_{0}\right)$ denote the cross-sectional area of such a slice

Cavalieri's principle

Suppose f is continuous nonnegative-valued on

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

- We can think of the quantity $A\left(x_{0}\right) d x$ as giving the volume of an "infinitely thin" slab with:
- Thickness $d x$, and
- Cross-sectional area $A\left(x_{0}\right)$

Cavalieri's principle: Definite Integral of a Function of Two Variables
Suppose f continuous nonnegative-valued on

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

- Hence, the total volume of the solid is the "sum" of the volumes of such slabs

$$
V=\int_{a}^{b} A(x) d x
$$

Definite Integral of a Function of Two Variables

- Note that $A\left(x_{0}\right)$ is the area under the curve $z=f\left(x_{0}, y\right)$
- This curve is obtained by slicing the surface $z=f(x, y)$ with the plane $x=x_{0}$
- Therefore,

$$
A\left(x_{0}\right)=\int_{c}^{d} f\left(x_{0}, y\right) d y \quad\left(x_{0} \text { is constant }\right)
$$

Definite Integral of a Function of Two Variables

- Then,

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x \quad \text { (iterated integral) }
$$

Example 1

- Consider the case of a box

- This box is bounded
- On top and bottom by the planes

$$
z=c(\text { where } c>0) \text { and } z=0
$$

- On the sides by the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq a, 0 \leq y \leq b\right\}
$$

Example 1

- Consider the case of a box

- Hence, the volume of the box may be found by computing the volume under the graph of $z=c$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq a, 0 \leq y \leq b\right\}
$$

- Using the iterated integral
$V=\int_{0}^{a} \int_{0}^{b} c d y d x=\int_{0}^{a}\left(\left.c y\right|_{y=0} ^{y=b}\right) d x=\int_{0}^{a} c b d x=\left.c b x\right|_{x=0} ^{x=a}=c b a$

Example 2

- We calculate the volume under the graph of $z=4-x^{2}-y^{2}$ over the square

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq x \leq 1,-1 \leq y \leq 1\right\}
$$

Example 2

- We calculate the volume under the graph of $z=4-x^{2}-y^{2}$ over the square

$$
\begin{aligned}
& R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq x \leq 1,-1 \leq y \leq 1\right\} \\
& V=\int_{-1}^{1} \int_{-1}^{1}\left(4-x^{2}-y^{2}\right) d y d x=\left.\int_{-1}^{1}\left(4 y-x^{2} y-\frac{1}{3} y^{3}\right)\right|_{y=-1} ^{y=1} d x \\
&= \int_{-1}^{1}\left(\left(4-x^{2}-\frac{1}{3}\right)-\left(-4+x^{2}+\frac{1}{3}\right)\right) d x \\
&=\int_{-1}^{1}\left(8-2 x^{2}-\frac{2}{3}\right) d x=\left.\left(\frac{22}{3} x-\frac{2}{3} x^{3}\right)\right|_{x=-1} ^{x=1} \\
&=\left(\frac{22}{3}-\frac{2}{3}\right)-\left(-\frac{22}{3}+\frac{2}{3}\right)=\frac{40}{3}
\end{aligned}
$$

Proposition 1.1

- Let R be the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

- Let f be continuous and nonnegative on R
- Then, the volume V under the graph of f over R is

$$
V=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Proposition 1.1

$$
V=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Remark

Slicing the solid with the plane $y=y_{0}$ instead of with the plane $x=x_{0}$

Example 3

- We find the volume under the graph of $z=\cos x \sin y$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, 0 \leq x \leq \frac{\pi}{2}\right., 0 \leq y \leq \frac{\pi}{4}\right\}
$$

Example 3

- We find the volume under the graph of $z=\cos x \sin y$ over the rectangle

$$
\begin{aligned}
& R=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, 0 \leq x \leq \frac{\pi}{2}\right., 0 \leq y \leq \frac{\pi}{4}\right\} \\
V= & \int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \cos x \sin y d y d x=\left.\int_{0}^{\pi / 2}(-\cos x \cos y)\right|_{y=0} ^{y=\pi / 4} d x \\
= & \int_{0}^{\pi / 2}\left(\frac{-\sqrt{2}}{2} \cos x-(\cos x)\right) d x=\frac{2-\sqrt{2}}{2} \int_{0}^{\pi / 2} \cos x d x \\
= & \left.\frac{2-\sqrt{2}}{2} \sin x\right|_{0} ^{\pi / 2}=\frac{2-\sqrt{2}}{2}(1-0)=\frac{2-\sqrt{2}}{2}
\end{aligned}
$$

- It is easy to check that the same result is obtained calculating

$$
V=\int_{0}^{\pi / 4} \int_{0}^{\pi / 2} \cos x \sin y d x d y
$$

Example 4

Does this figures haves the same volume?

